壓鑄模具的結構設計會深刻影響金屬液在高壓射入時的充填效果,因此型腔幾何、流道尺寸與澆口位置必須依照金屬流動性與產品結構精準規劃。當流道阻力均勻、路徑順暢時,金屬液能快速且穩定地進入模腔,使薄壁與細節區域完整成形,減少縮孔、翹曲或局部填不滿的狀況。若流道設計不均,容易產生渦流或停滯,使成品精度與一致性明顯下降。
散熱系統則是維持模具穩定性的另一關鍵。壓鑄過程中的高溫循環若無良好的水路配置,模具會出現局部過熱,造成工件表面產生亮痕、流痕或粗糙質地。均衡的冷卻設計能使模具在每次循環中迅速回到適當溫度,不僅提升生產效率,也能降低熱疲勞,延緩裂紋產生,提高整體耐用度。
成品表面品質也依靠型腔加工精度支撐。平滑的型腔能讓金屬液貼附更均勻,使外觀更加細膩;若再搭配耐磨或硬化表層處理,能有效減少長時間生產造成的磨耗,使外觀品質保持一致,不易產生粗糙紋或流痕。
模具保養的重要性則在於確保長期穩定生產。分模面、排氣孔與頂出系統在多次使用後會累積粉渣、積碳或磨損,若未定期清潔與調整,容易導致毛邊增加、頂出不順或散熱效率下降。透過規律檢查、修磨與清潔,模具能維持最佳狀態,使壓鑄過程穩定且產品品質更可靠。
鋁、鋅、鎂三種金屬是壓鑄製程中最常使用的材料,各自展現不同的物理特性與成型表現。鋁合金以輕量、高強度與良好散熱能力著稱,密度低但剛性穩定,適合製作具有承載需求的中大型零件。鋁的耐腐蝕性佳,能在高濕或溫差明顯的環境中維持穩定表現,因此常被用於車用結構、散熱模組與戶外設備零件。
鋅合金的流動性在三者中最為突出,熔點低、填模效果佳,適合製作細小複雜、對尺寸精度與外觀要求高的零件。鋅的表面平整度優異,尺寸穩定性高,成型後的產品細膩度極佳,常見於精密五金、裝飾件、齒輪或功能性扣具等領域。鋅也易於進行電鍍,使外觀質感更一致。
鎂合金則以超輕量為最大優勢,密度更低但仍具良好的剛性與吸震特性,是輕量化應用的理想材料。鎂壓鑄成型速度快,有助提升生產效率,並提升產品的操作手感,因此在 3C 外殼、自行車零件與車用輕量結構件中特別常見。鎂的耐腐蝕性相對較弱,需搭配適當表面處理以提高耐用度。
依據重量需求、外觀精密度、結構強度與使用環境做材料選擇,能讓壓鑄製程達到最佳效率並確保成品品質。
壓鑄是一項利用高壓將熔融金屬迅速注入模具,並在短時間內完成冷卻定形的金屬加工方式,常用於製作尺寸穩定、外型複雜的零件。常見的壓鑄材料包括鋁合金、鋅合金與鎂合金,這些金屬在液態時具備良好流動性,能在高速注入的過程中充分填滿模腔,形成緻密且強度高的成品。
壓鑄模具由固定模與活動模兩部分構成,合模後形成產品外型所需的模腔。模具內部設有澆口、排氣槽與冷卻水路等結構,各自扮演重要角色。澆口負責將金屬液導入模腔,使金屬流動順暢且均勻;排氣槽排除模腔內的空氣,避免產生氣孔;冷卻水路則控制模具溫度,使凝固過程更加穩定。
金屬加熱至熔融狀態後會被倒入壓室,接著由高壓活塞推動,使金屬液以極高速度射入模具腔體。高壓射入是壓鑄的重要特點,它能讓金屬液在瞬間填滿整個模腔,精準呈現薄壁、深槽或複雜幾何細節。金屬液進入模具後立即與模壁接觸並開始冷卻,冷卻水道加速熱量散出,使金屬迅速由液態轉為固態,外型在短時間內完成定形。
金屬完全凝固後,模具開啟並透過頂出裝置推出成品。脫模後的壓鑄件通常需進行修邊與簡易表面處理,使外觀更平整、尺寸更符合要求。壓鑄透過高壓動力、材料特性與模具設計的配合,展現高效率又高精度的金屬成形能力。
壓鑄製品的品質要求對於最終產品的功能和結構穩定性至關重要。在生產過程中,常見的品質問題包括精度誤差、縮孔、氣泡及變形等,這些問題可能會影響產品的使用性能。精度和缺陷檢測的準確性是確保壓鑄製品達到要求品質的關鍵,及時發現和解決這些問題對品質管理至關重要。
精度誤差主要來自於金屬熔液流動不均或模具設計問題,這會導致壓鑄件的尺寸與設計要求有所偏差,從而影響其精密裝配與功能表現。三坐標測量機(CMM)是最常用的檢測工具,它可以精確地測量壓鑄件的各項尺寸,並將其與設計標準進行比對,發現尺寸誤差後進行必要的修正。
縮孔問題通常發生在金屬冷卻過程中,當熔融金屬冷卻時,由於體積收縮,會在內部形成孔洞,這些縮孔會削弱壓鑄件的結構強度,尤其在厚壁部件中尤為顯著。X射線檢測技術能夠穿透金屬,檢查內部結構,及早發現並修正縮孔問題,從而避免結構強度的下降。
氣泡問題則源於熔融金屬在注入模具過程中未能完全排出空氣,這會在金屬內部形成空隙,影響金屬的密度和強度。超聲波檢測是常見的檢測方法之一,通過超聲波反射來識別金屬內部的氣泡,幫助檢測人員準確定位氣泡問題並進行修復。
變形問題通常由冷卻過程中的不均勻收縮引起,這會導致壓鑄件形狀的變化,影響產品的外觀和結構穩定性。為了檢測冷卻過程中的變形,紅外線熱像儀可用來監測金屬的溫度變化,確保冷卻過程均勻,減少冷卻不均所造成的變形問題。
壓鑄以高壓迅速填滿模腔,使金屬液能在瞬間完成成型,特別適合外型複雜、細節精細的零件。由於金屬在高壓下具有良好致密度,成品表面平滑、尺寸穩定度高,後加工需求較少。成型週期短,使壓鑄在大量生產時展現出極高效率,並能有效降低單件成本,成為中小型零件量產的主力工法。
鍛造利用外力使金屬塑性變形,使材料內部纖維方向更緊密,因此強度、韌性與耐衝擊性皆優於鑄造類工法。雖具備極佳結構性能,但鍛造成型速度慢、模具成本高,而且不易製作複雜造型或薄壁結構,更適用於高強度、耐久性要求高的零件,而非精細外觀件。
重力鑄造讓金屬液依靠自重流入模具,工藝設備簡單、模具耐用,但因流動性較弱,使細節呈現度與表面品質不及壓鑄。冷卻與填充速度較慢,使產量無法大幅提升。此工法多用於中大型、壁厚規則、形狀相對簡單的零件,適合中低量的穩定生產。
加工切削透過刀具逐步移除材料,是精度最高的加工方式,能達到極窄公差與優異表面品質。雖然加工精度卓越,但耗時長、材料耗損高,使單件成本較高。常用於少量製作、試作品,或作為壓鑄後的精密修整,使關鍵尺寸達到更高的要求。
透過比較四種工法,可清楚看出壓鑄在效率、產量與細節成型方面具備明顯技術優勢。