壓鑄是一種利用高壓將熔融金屬注入鋼製模具,使零件快速成形的金屬加工技術。常用於壓鑄的金屬材料多為鋁合金、鋅合金與鎂合金,它們具備良好的流動性、低熔點及冷卻後的高強度,能滿足精密零件的生產需求。金屬在熔爐中加熱至液態後,會輸送至壓鑄機的壓室,準備進入射出階段。
壓鑄模具由固定模與活動模組成,兩者閉合後形成完整的模腔。模具內部配置了澆口、排氣槽及冷卻水路,用以引導金屬液填滿模腔、排出空氣並維持模具溫度穩定。澆口設計會影響金屬的流動速度與充填品質,而排氣槽則避免空氣殘留,降低氣孔與缺陷的發生機率。
當熔融金屬注入壓室後,高壓活塞會以極高速度推送,使金屬液瞬間射入模具腔體。高壓與高速的組合是壓鑄能形成薄壁複雜結構的關鍵,可確保金屬在極短時間內完全填滿模腔。金屬液與模壁接觸後立即開始冷卻凝固,冷卻水路能加速降溫並保持成形品質一致。
在金屬完全凝固後,模具開啟,頂針將成品推出。零件取出後通常會進行修邊、拋光或後加工,使外觀與尺寸更加精準。透過熔融、射出、冷卻與脫模的連續循環,壓鑄得以穩定生產大量結構細緻、強度佳的金屬零件。
壓鑄模具的結構設計是決定產品精度的核心因素。型腔尺寸的精準度、分模面設置的位置與流道設計的順暢度,都會影響金屬液的充填狀態。當金屬液能沿著合理流道快速抵達每個角落,成品尺寸就能更一致,邊角不易產生缺料或冷隔問題。而若型腔加工誤差大或流道轉折過多,容易造成局部收縮與變形。
散熱設計則影響模具在生產過程中的穩定性。壓鑄時高溫金屬液持續沖擊模具,若冷卻水道分布不均,模具會產生局部溫度差,使金屬凝固速度不一致,進而造成表面流痕、色澤不均與結構強度下降。良好的冷卻佈局能讓模具快速回到適合溫度,使每次成形條件保持穩定,提高產能與品質一致性。
模具表面品質同樣影響產品外觀。型腔內若經過高精度拋光與耐磨處理,金屬液成形後能呈現更光滑細緻的表面,不易出現刮痕與麻點。當模具表面磨損逐漸加劇時,瑕疵會直接反映在產品上,讓外觀一致性下降。
模具耐用度與材料強度、結構補強與排氣設計密切相關。高耐熱鋼材能承受反覆高壓射出,而良好的排氣槽能協助排出型腔內氣體,避免爆氣痕跡與局部燒蝕,延長模具壽命。
模具保養則是維持品質穩定的關鍵。定期清潔排氣孔、檢查冷卻水道與維護分模面平整度,都能確保模具在長期量產中保持最佳狀態,避免不良率提升並延續模具使用壽命。
壓鑄製品的品質要求對產品的性能和結構穩定性有著極高的標準,任何微小的缺陷都可能影響其最終用途。壓鑄件常見的品質問題包括精度誤差、縮孔、氣泡和變形等,這些問題往往源於金屬熔液流動、模具設計、冷卻過程等多方面因素的影響。了解這些問題的來源並選擇正確的檢測方法,是品質管理中的關鍵。
精度誤差是壓鑄製品中最常見的問題之一。金屬熔液流動不均、模具設計缺陷、冷卻不均等因素會導致製品的尺寸或形狀與設計要求不符。這些誤差會影響組裝精度,甚至影響到產品的功能性。三坐標測量機(CMM)是一個高精度的檢測工具,能夠準確測量每個壓鑄件的尺寸,並與設計要求進行比對,發現誤差並進行修正。
縮孔問題通常出現在冷卻過程中,當熔融金屬冷卻並固化時,由於金屬收縮,會在內部形成空洞。這些縮孔會削弱壓鑄件的結構強度。X射線檢測技術常用來檢查縮孔,該技術能穿透金屬顯示內部結構,及時發現並處理縮孔問題。
氣泡缺陷通常是由熔融金屬未能完全排除模具中的空氣所引起的,這些氣泡會在金屬內部形成不均勻的空隙,影響其密度與強度。超聲波檢測技術可以用來檢測氣泡,通過反射的超聲波來定位氣泡的具體位置,幫助檢測人員發現並修復這些缺陷。
變形問題則通常由冷卻過程中的不均勻收縮引起。當冷卻不均時,壓鑄件的形狀會發生變化,這會影響到其外觀與結構穩定性。紅外線熱像儀可以幫助監測冷卻過程中的溫度變化,確保冷卻過程均勻,從而減少變形的風險。
鋁、鋅、鎂三種金屬在壓鑄領域中被廣泛使用,各自具備不同的特性,能滿足從結構強度到外觀精細度的多樣需求。鋁合金具有高強度與輕量化優勢,密度低但剛性良好,適合用於承載性需求中等以上的零件。鋁同時具備良好散熱與耐腐蝕能力,使其能在戶外或高溫條件下仍維持穩定性能,因此常見於車用零件、散熱組件與中大型結構零件。
鋅合金以優異的流動特性著稱,可在壓鑄過程中完整填補複雜細節,使成品表面平滑、尺寸精度高。鋅的熔點較低,成型效率佳,特別適用於小型精密零件,如五金配件、裝飾零件與機構扣具。鋅也能進行多樣化表面處理,使外觀品質更一致,更適用於高外觀要求的產品。
鎂合金則以極輕量的物理特性最具代表性,密度為三者中最低,但仍保有良好的強度重量比。其吸震特性讓產品在使用時更具穩定感,並能有效提升操作手感。鎂的成型速度快,可提升量產效率,因此廣泛應用於 3C 裝置殼體、自行車零件與車用輕量化結構。不過,鎂的耐腐蝕性較弱,需透過表面處理強化其使用壽命。
根據產品需求的重量、強度、環境耐受度與造型複雜度選擇材料,能有效提升壓鑄產品的整體品質與性能表現。
壓鑄以高壓快速將金屬液推入模腔,使複雜幾何、薄壁結構與細微紋理能在短時間內成形。高壓充填讓金屬更致密,使成品表面平整、細節清楚,尺寸重複性高。成型週期短、產量高,使壓鑄在大量生產時具備明顯成本優勢,適合追求效率與精度並重的零件。
鍛造則利用外力使金屬變形,使內部組織更緊密,具備極高強度與耐衝擊性。鍛造適用於高負載零件,但加工方式限制形狀自由度,不易形成複雜外型。成型速度較慢、模具成本較高,使其更適合作為高強度應用,而非大量生產細節導向的零件。
重力鑄造依靠金屬液自重填充模具,設備簡單、模具壽命長,但因流動性較弱,細節呈現與尺寸精度不如壓鑄。澆注與冷卻時間較長,使產能提升不易。此工法多用於中大型、壁厚均勻的零件,適合中低量、注重穩定性的製造需求。
加工切削利用刀具移除材料,能製作出極高精度與光滑表面的零件,是四類工法中精度最高的方式。但加工時間長、材料浪費較多,使單件成本較高。多用於少量製作、原型打樣,或壓鑄後的精密修整,使關鍵尺寸達到更嚴格的要求。
依需求選擇合適工法,能在效率、成本與品質之間取得最佳平衡。